首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   817篇
  免费   106篇
  国内免费   142篇
测绘学   6篇
大气科学   5篇
地球物理   372篇
地质学   247篇
海洋学   290篇
综合类   56篇
自然地理   89篇
  2024年   3篇
  2023年   19篇
  2022年   30篇
  2021年   30篇
  2020年   25篇
  2019年   30篇
  2018年   24篇
  2017年   27篇
  2016年   33篇
  2015年   34篇
  2014年   44篇
  2013年   49篇
  2012年   34篇
  2011年   54篇
  2010年   50篇
  2009年   47篇
  2008年   61篇
  2007年   46篇
  2006年   71篇
  2005年   37篇
  2004年   56篇
  2003年   34篇
  2002年   36篇
  2001年   32篇
  2000年   19篇
  1999年   30篇
  1998年   11篇
  1997年   18篇
  1996年   13篇
  1995年   9篇
  1994年   12篇
  1993年   7篇
  1992年   9篇
  1991年   7篇
  1990年   7篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1985年   5篇
  1983年   2篇
  1981年   2篇
  1980年   1篇
  1976年   1篇
  1973年   1篇
排序方式: 共有1065条查询结果,搜索用时 15 毫秒
21.
滑磊  尤爱菊  韩曾萃  腾辉  朱军政 《水文》2015,35(4):27-32
调水是目前快速改善湖泊水质的有效方法之一,但是对于调水所能达到的最佳效果研究很少。以杭州西湖为例,利用环境流体动力学模型EFDC构建了西湖TP模型,对通过苏堤各桥孔的流量、外西湖分层流场和水质浓度进行了验证,分析了在现有外围调水情况下增加西湖内循环引水后西湖TP的时空变化。模拟结果表明,增加内循环引水,直接将低浓度区的水引至高浓度区,能够明显降低高浓度区的水质;低浓度区由于引水量的减小,区域内水质浓度会有一定的上升;全湖平均水质浓度基本不会发生改变。在没有增加外部引水的情况下,内循环引水可以使湖泊水体掺混更加均匀,对于防止高浓度区富营养化有很好的效果。增加内循环引水对西湖改善高浓度区水质有一定的指导意义,同时也可为相似湖泊增加内循环引水措施提供借鉴。  相似文献   
22.
采用浮游植物计数法、高效液相色谱串联质谱法、分光光度法等分析方法,探索了微小亚历山大藻(Alexandrium minutum)在批次培养过程中氮磷吸收、产毒、生物量、p H等参数的动态变化关系。结果表明,微小亚历山大藻对磷的吸收迅速,可以将磷储存于体内,待生长使用。该藻对氮的吸收相对缓慢,环境中氮缺乏时,产毒量不再增加,说明氮对产毒有着重要的调控作用。在第二对数期中出现了碳限制环境,导致叶绿素a在碳限制条件下无法表征藻的生物量,相反,叶绿素a和生物量呈负线性关系,可能是叶绿素转化成其它含碳物质,用于生长。毒素不仅存在于细胞体内,培养液中(胞外)也含有毒素,并且胞外毒素从稳定期开始逐渐升高。胞内毒素的组成中GTX1/4占据绝对优势,GTX2/3含量相对较少。生长延缓期和第一对数期,各种毒素组成比例相对稳定,而在随后的生长期内,GTX1/4在总毒素中的占比逐渐上升,GTX2/3占比逐渐下降,表明微小亚历山大藻毒素组成会随着生长周期的变化而发生变化。  相似文献   
23.
文章研究了臭氧及臭氧类高级氧化技术(AOPs-O3)在不同pH条件下降解甲基对硫磷(MP)的效能。结果表明,在pH 3~10的条件下(反应过程控制pH),单独臭氧化5min即可完全降解MP,但不同pH下化学耗氧量(COD)和有机磷的释放率差异明显。在pH为3.3,7.5和9.4的条件下单独臭氧30min后COD的去除率分别为55.17%,89.64%和93.10%,有机磷的释放率分别为16.33%,95.00%和99.99%。考虑酸性条件下可以规避碳酸盐的负面影响(特别是高浓度废水),利用O3/H2O2/Ti(IV)在pH 3.3条件下处理MP溶液,COD去除率和有机磷释放率分别达到89.64%和81.57%。相对法计算求得MP与O3和羟基自由基(·OH)的速率常数分别为31.98L·(mol·s)-1和7.488×109 L·(mol·s)-1。活性污泥法的测试结果表明,MP经O3/Ti(IV)/H2O2(pH=3.3)和O3(pH=9.4)可提升含MP废水的可生化性,但与培养液体系相比仍具有一定的毒性。  相似文献   
24.
Phosphorus (P) is one of the major limiting nutrient in many freshwater ecosystems. During the last decade, attention has been focused on the fluxes of suspended sediment and particulate P through freshwater drainage systems because of severe eutrophication effects in aquatic ecosystems. Hence, the analysis and prediction of phosphorus and sediment dynamics constitute an important element for ecological conservation and restoration of freshwater ecosystems. In that sense, the development of a suitable prediction model is justified, and the present work is devoted to the validation and application of a predictive soluble reactive phosphorus (SRP) uptake and sedimentation models, to a real riparian system of the middle Ebro river floodplain. Both models are coupled to a fully distributed two‐dimensional shallow‐water flow numerical model. The SRP uptake model is validated using data from three field experiments. The model predictions show a good accuracy for SRP concentration, where the linear regressions between measured and calculated values of the three experiments were significant (r2 ≥ 0.62; p ≤ 0.05), and a Nash–Sutcliffe coefficient (E) that ranged from 0.54 to 0.62. The sedimentation model is validated using field data collected during two real flooding events within the same river reach. The comparison between calculated and measured sediment depositions showed a significant linear regression (p ≤ 0.05; r2 = 0.97) and an E that ranged from 0.63 to 0.78. Subsequently, the complete model that includes flow dynamics, solute transport, SRP uptake and sedimentation is used to simulate and analyse floodplain sediment deposition, river nutrient contribution and SRP uptake. According to this analysis, the main SRP uptake process appears to be the sediment sorption. The analysis also reveals the presence of a lateral gradient of hydrological connectivity that decreases with distance from the river and controls the river matter contribution to the floodplain. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
25.
26.
Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer‐lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater‐borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer‐lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater‐borne P loads vary from 0.74 to 2900 mg PO4‐P m?2 year?1; for N, these loads vary from 0.001 to 640 g m?2 year?1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
27.
Concentration–discharge (C-Q) relationships are an effective tool for identifying watershed biogeochemical source and transport dynamics over short and long timescales. We examined stormflow C-Q, hysteresis, and flushing patterns of total suspended sediment (TSS) and soluble reactive phosphorus (SRP) in two stream reaches of a severely impaired agricultural watershed in northeastern Wisconsin, USA. The upper watershed reach—draining a relatively flat, row crop-dominated contributing area—showed predominantly anti-clockwise TSS hysteresis during storms, suggesting that particulate materials were mobilized more from distal upland sources than near- and in-channel areas. In contrast, the incised lower watershed reach produced strong TSS flushing responses on the rising limb of storm hydrographs and clockwise hysteresis, signalling rapid mobilization of near- and in-channel materials with increasing event flows. C-Q relationships for SRP showed complex patterns in both the upper and lower reaches, demonstrating largely non-linear chemodynamic C-Q behaviour during events. As with TSS, anti-clockwise SRP hysteresis in the upper reach suggested a delay in the hydrologic connectivity between SRP sources and the stream, with highly variable SRP concentrations during some events. A broad range of clockwise, anti-clockwise, and complex SRP hysteresis patterns occurred in the lower watershed, possibly influenced by in-channel legacy P stores and connection to tile drainage networks in the lower watershed area. Total suspended sediment and SRP responses were also strongly related to precipitation event characteristics including antecedent precipitation, recovery period, and precipitation intensity, highlighting the complexity of stormflow sediment and phosphorus responses in this severely impaired agricultural stream.  相似文献   
28.
This study delineated spatially and temporally variable runoff generation areas in the Sand Mountain region pasture of North Alabama under natural rainfall conditions, and demonstrated that hydrologic connectivity is important for generating hillslope response when infiltration‐excess (IE) runoff mechanism dominates. Data from six rainfall events (13·7–32·3 mm) on an intensively instrumented pasture hillslope (0·12 ha) were analysed. Analysis of data from surface runoff sensors, tipping bucket rain gauge and HS‐flume demonstrated spatial and temporal variability in runoff generation areas. Results showed that the maximum runoff generation area, which contributed to runoff at the outlet of the hillslope, varied between 67 and 100%. Furthermore, because IE was the main runoff generation mechanism on the hillslope, the data showed that as the rainfall intensity changed during a rainfall event, the runoff generation areas expanded or contracted. During rainfall events with high‐intensity short‐ to medium‐duration, 4–8% of total rainfall was converted to runoff at the outlet. Rainfall events with medium‐ to low‐intensity, medium‐duration were found less likely to generate runoff at the outlet. In situ soil hydraulic conductivity (k) was measured across the hillslope, which confirmed its effect on hydrologic connectivity of runoff generation areas. Combined surface runoff sensor and k‐interpolated data clearly showed that during a rainfall event, lower k areas generate runoff first, and then, depending on rainfall intensity, runoff at the outlet is generated by hydrologically connected areas. It was concluded that in IE‐runoff‐dominated areas, rainfall intensity and k can explain hydrologic response. The study demonstrated that only connected areas of low k values generate surface runoff during high‐intensity rainfall events. Identification of these areas would serve as an important foundation for controlling nonpoint source pollutant transport, especially phosphorus. The best management practices can be developed and implemented to reduce transport of phosphorus from these hydrologically connected areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
29.
Excessive terrestrial nutrient loadings adversely impact coral reefs by primarily enhancing growth of macroalgae, potentially leading to a phase‐shift phenomenon. Hydrological processes and other spatial and temporal factors affecting nutrient discharge must be examined to be able to formulate effective measures for reducing nutrient export to adjacent reefs. During storm events and baseflow periods, water samples were obtained from the tropical Todoroki River, which drains an intensively agricultural watershed into Shiraho coral reef. In situ nutrient analyzers were deployed for 6 months to hourly measure dissolved nutrient (NO3‐N and PO43−‐P) concentrations. Total phosphorus (TP) and suspended solid concentration (TSS) were increased by higher rainfall intensity (r = 0·94, p < 0·01) and river discharge Q (r = 0·88, p < 0·01). In contrast, NO3‐N concentration tends to decrease drastically (e.g. from 3 to 1 mg l−1) during flood events. When base flow starts to dominate afterwards, NO3‐N manifested an increasing trend, but decreases when baseflow discharge becomes low. This counter‐clockwise hysteresis for NO3‐N highlights the significant influence of groundwater discharge. N delivery can therefore be considered a persistent process compared to sediment and P discharge, which are highly episodic in nature. Based on GIS analysis, nutrient concentration along the Todoroki River was largely affected by the percentage of sugarcane/bare areas and bedrock type. The spatial distribution of N concentration in the river reflects the considerable influence of subsurface geology—higher N levels in limestone‐dominated areas. P concentrations were directly related to the total length of artificial drainage, which enhances sediment transport. The use of high‐resolution monitoring data coupled with GIS‐based spatial analysis therefore enabled the clarification of control factors and the difference in the spatio‐temporal discharge characteristics between N and P. Thus, although erosion‐reduction schemes would reduce P discharge, other approaches (e.g. minimize fertilizer) are needed to reduce N discharge. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
30.
为研究海水养殖对海湾沉积物的累积影响, 对大亚湾的大鹏澳养殖区沉积物柱状样中总氮、总磷和有机碳的含量及剖面分布特征进行了研究, 并探讨了海水养殖区沉积物中氮、磷的污染状况。结果表明, 网箱养殖区、贝类养殖区和对照区等3个区域柱状样中总氮的含量范围分别为638.2—3803.9mg.kg-1、740.9—2152.1mg.kg-1和343.2—471.9mg.kg-1, 总磷的含量范围分别为344.7—3233.9mg.kg-1、297.9—497.5mg.kg-1和650.2—1327.2 mg.kg-1, 有机碳的含量范围分别为0.96%—2.22%、0.87%—1.13%和0.69%—0.95%。该三个因子的含量均从底层至表层呈增加趋势, 但网箱养殖区上层增加幅度最为剧烈, 贝类区次之, 对照区变化幅度最小。所有柱状样中, 总氮含量均超标, 但网箱养殖区总氮污染最为严重, 贝类养殖区次之, 对照区最轻; 网箱养殖区的总磷在上层的不同深度超标, 而贝类养殖区及对照区柱状样的总磷含量均未超标。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号